
Asymptotic Analysis
Limit Theorem of Order Notation: Suppose for all n ≥ n0,
we have f(n), g(n) > 0 and L = limn f(n)/g(n), then

f(n) ∈

o(g(n)) if L = 0
Θ(g(n)) if 0 < L <∞
ω(g(n)) if L =∞

Relations betwn Order Notations:
• f ∈ Θ(g)⇔ g ∈ Θ(f);
• f ∈ O(g)⇔ g ∈ Ω(f);
• f ∈ o(g)⇔ g ∈ ω(f);
• f ∈ o(g)⇒ g ∈ O(f);

• f ∈ ω(g)⇒ g ∈ Ω(f);

• f ∈ o(g)⇒ g /∈ Ω(f);

• f ∈ ω(g)⇒ g /∈ O(f);
Table of Recurrence Raltions:

Recursion Resolves to

T (n) ≤ T (n/2) + O(1) T (n) ∈ O(log n)
T (n) ≤ 2T (n/2) + O(n) T (n) ∈ O(n log n)

T (n) ≤ 2T (n/2) + O(log n) T (n) ∈ O(n)
T (n) ≤ cT (n− 1) + O(1)

for some c < 1 T (n) ∈ O(1)

T (n) ≤ 2T (n/4) + O(1) T (n) ∈ O(
√

n)
T (n) ≤ T (

√
n) + O(

√
n) T (n) ∈ O(

√
n)

T (n) ≤ T (
√

n) + O(1) T (n) ∈ O(log log n)

We also have:
(log n)c ∈ o(nd)

for any c and d constants.

Priority Queues
Heapify and Heapsort
In heap, insert() and deleteMax() are both O(log n).

Heapify: Observe that if both subtrees of node v have correct
heap-order, fix-down on v will establish correct order for the
whole subtree of v, hence we have heapify pseudocode:

1 for i ← parent (last ())$ down to 0: fix -down(A, i, n)

and the complexity of the given algorithm is Θ(n):

h−1∑
i=0

2i(h− i) = 2h

h−1∑
i=0

h− i

2h−i
= 2h

h∑
i=1

i

2i

Heapsort: Heapify and array, and keep swapping the root
with the last element, hence sorting the array in
non-decreasing order. Total time is O(n log n).

Fine the kth smallest element
1. Make k + 1 passes through the array, deleting the

minimum number each time. Complexity: θ(kn).
2. Sort A, then return A[k]. Complexity: n log n.
3. Create a min-heap with heapify(A). Call

delete−min(A) k + 1 times. Complexity: n + k log n.

Sorting, Average-Case and Randomized
Algorithms
Define T (I, R) to be running time of randomized algorithm for
instance I and R, sequence of random numbers algorithm
choses. Then
Expected Runtime for Instance I:
Texp(I) = E[T (I, R)] =

∑
R

T (I, R) · P r(R); and

Worst-case Expected Runtime: Texp(n) = max
I∈In

Texp(I).

We use randomized algorithms because we can improve
running time and also improve solution. It shift dependence
from what we cannot control (user) to what we can control
(RNG).

Is expected time of randomized version always the same as
average case time of non-randomized version?

• no in general (depends on randomization)

• yes if randomization is a shuffle, i.e., choose instance
randomly with equal probability

QuickSelect
QuickSelect has best case runtime Θ(n) and worst case
runtime Θ(n2), but the average case runtime is Θ(n). Hence
we randomize QuickSelect so that the expected time of it is
the same as the average case runtime.

QuickSort
Best case runtime Θ(n log n) and worst case runtime O(n2),
but the average case runtime is Ω(n log n).

Comparison-Based Sorting
Definition: Sorting permutation stores array indexes in the
order corresponding to the sorted array.
Theorem: Under comparison model, any sorting algorithm
requires Ω(n log n) comparisons.

Non-Comparison-Based Sorting
These sortings are less general than comparison-based sortings.

Bucket Sort
The runtime and auxiliary space for Bucket Sort are both Θ(n + R).
Bucket sort is stable.

MSD-Radix-Sort
the total auxiliary space is Θ(n + R + m) ∗;
the total time is O(mnR).

LSD-Radix-Sort
the total time is P (m(n + R)).

Dictionaries
Restructure AVL Tree

•

z

c
g

u ← rotate-right(z)

•

z

c
g

rotate-left(c);
u ← rotate-right(z)

•

z

c
g

rotate-right(c);
u ← rotate-left(z)

•

z

c
g

u ← rotate-left(z)

AVL Tree Summary – Height is Θ(log n)
1. Search costs Θ(height);
2. Insert costs Θ(height), restructure will be called at

most once;
3. Delete costs Θ(height), restructure may be called

Θ(height) times.

Other Dictionaries
Skip List: Expected length of list Si at height i is n/2i,
expected height is ≤ 2 + log n. Expected space is Θ(n) and
expected running time is O(log n).
Biased Search: Optimal static ordering – we know the access
distribution; MTF (move-to-front) Heuristic; Transpose
Heuristic.

Dictionaries for Special Keys
Any comparison-based algorithm requires in the worst case
Ω(log n) comparisons to search among n distinct items.

Interpolation Search

ℓ+


distance from left key︷ ︸︸ ︷

k −A[ℓ]
A[r]−A[ℓ]︸ ︷︷ ︸

distance between left and right keys

× (r − ℓ− 1)︸ ︷︷ ︸
unknown keys in range


Trie
The key function/ method for a trie is Trie::get-path-to,
which returns a stack P of all the ancestors of where w would
be stored.
In general, search(w), prefix-search(w), insert(w),
delete(w) all take time Θ(|w|).
multiway trie has bigger alphabet. Children can be stoed in

1. array; 2. linked list; 3. AVL tree
Arrays are fast, lists are space efficient, AVL tree is best in theory,
but not worth it in practice unless |Σ| is huge.

∗m is the number of digits

Load Factor, α, is defined to be n

M
, where n is the number

of elements and M is the size of the hash table.
Linear Probing: Expected runtime of search and delete is
Θ(1 + α), insert is Θ(1), space is O(M + n).
For cuckoo hashing, the load factor is defined as n

|T0|+ |T1|
,

and if it is small enough, α < 1/2, then insertion has O(1)
expected time (but this wastes space, expected space is O(n)).

1. All strategies have O(1) expected time for search,
insert, delete

2. Cuckoo hashing has O(1) worst case for search, delete

3. Probe sequence use O(n) worst case space
4. Cuckoo hashing uses O(n) expected space

For any hashing, the worst case runtime for insert is
Θ(n).

Range Search
Quad Tree: Height of quad tree is proven Θ(ρ(S)), where
ρ(S) is the spread factor defined to be L/dmin.
The complexity to build the initial tree and perform range
search are both Θ(nh).
kd-Tree: Consider a kd-Tree for d-dimensional space, we have

storage : O(n);
height : O(log n);

Construction Time : O(n log n);
Range query time : O

(
s + n1−1/d

)
, d is a constant.

Range Tree: Range trees can be generalized to d
-dimensional space:

storage : O(n(log n)d−1);
Construction Time : O(n(log n)d);
Range query time : O

(
s + (log n)d

)
String Matching
Karp Rabin: use hash values (called fingerprints) to
eliminate guesses.
Given that we can compute the next hash value from the
previous one, we can show that expected running time is

O(m + n). Although Θ(mn) is the worst-case, but this is
extremely unlikely.
KMP: Failure array, store the length of the longest valid
suffix of P [1, . . . , j] in F [j].

1 F←failure - array (P), i←0, j←0
2 while i < n do
3 if P[j] = T[i]
4 if j = m -1: " found at i - j"
5 else: i←i+1, j←j+1
6 else // $P[j] \neq T[i]$
7 if j > 0: j←F[j -1]
8 else: i←i+1
9 return FAIL

Failure array O(m), matching O(n), so O(m + n) in total.
Boyer-Moore: Reverse order searching, bad character
heuristic, last Occurrence Array,

1 L←last occ arr of P, j←m-1, i←m -1
2 while i<n and j≥0 do // curr guess @ i-j
3 if T[i] = P[j] then: i←i-1, j←j -1
4 else: i←i + m -1 - min{L(c), j -1}
5 j←m -1
6 if j = -1 return " found at guess i + 1" else return FAIL

Suffix Tree: build suffix tree by inserting each suffixes of T
into a compressed trie (Θ(|Σ|n2) but there is a Θ(|Σ|n) way).
prefix-search for P in the trie is O(|σ|m) if children are
stored in linked list, or O(m) if in array.
Suffix Array: storing sorted permutation of the suffixes of T
(implicitly, by storing start indices).

Compression
Huffman Tree: assign weight to each trie based on the
frequency and merge the two with the smallest frequencies
until only one left. Total encoding time is
O(|ΣS | log |ΣS |+ |C|). Decoding run-time: O(|C|).
LZW: algorithm discovers and encodes frequent substring as
we process text, no need to know frequent substrings
beforehand. When decoding, rememebr

s = sprev + sprev [0]

bzip2:
BWT→ MTF→ 0-run encoding→ Huffman

Huffman Lempel-Ziv-Welch bzip2 (uses
Burrows-Wheeler)

variable-length fixed-width multi-step
single-character multi-character multi-step
2-pass, must
send dictionary

1-pass not streamable

requires uneven
frequencies

requires repeated
substrings

requires repeated
substrings

2-4 Tree: each node contains one, two, or three KVPs. All
empty subtrees are at the same level. delete:

1 24 Tree :: delete (k)
2 v ← 24 Tree :: search (k)
3 if v is not a leaf
4 swap k with its inorder successor k’
5 swap v with leaf that contained k’
6 delete k and one empty subtree in key -subtree -list of v
7 while v has 0 keys // underflow
8 if v is the root , delete v and break
9 if v has immediate sibling u with 2 or more KVPs // transfer ,

then done!
10 transfer the key of u that is nearest to v to p
11 transfer the key of p between u and v to v
12 transfer the subtree of u that is nearest to v to v
13 break
14 else // merge and repeat
15 u ← immediate sibling of v
16 transfer the key of p between u and v to u
17 transfer the subtree of v to u
18 delete node v
19 v ← p

External Memory

(a,b)-tree: we have b ≥ 3, 2 ≤ a ≤ ⌈b/2⌉,

a ≤ # subtree ≤ b

but root can have ≥ 2 subtrees. All empty nodes are at the
same level. h ∈ O(loga n), right if a ≈ b/2.

of KVPs is equal to # of ∅’s.

B-tree: Special kind of of (a,b)-tree with a = ⌈b/2⌉, and so
h ∈ Θ(logB n) (transfers).

Tree Traversals:

10

5

3 9

20

15 25

LEVEL-ORDER [[10], [5, 20], [3, 9, 15, 25]]
PRE-ORDER [10, 5, 3, 9, 20, 15, 25]
IN-ORDER [3, 5, 9, 10, 15, 20, 25]
POST-ORDER [3, 9, 5, 15, 25, 20, 10]

	Asymptotic Analysis
	Priority Queues
	Heapify and Heapsort
	Fine the kth smallest element

	Sorting, Average-Case and Randomized Algorithms
	QuickSelect
	QuickSort
	Comparison-Based Sorting

	Non-Comparison-Based Sorting
	Bucket Sort
	MSD-Radix-Sort
	LSD-Radix-Sort

	Dictionaries
	Restructure AVL Tree
	AVL Tree Summary – Height is (n)

	Other Dictionaries
	Dictionaries for Special Keys
	Interpolation Search
	Trie

